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SOME RECENT RESULTS IN NONLINEAR FILTERING

THEORY WITH FINITELY ADDITIVE WHITE NOISE.

BY

G. Kallianpur

Center for Stochastic Processes

University of North Carolina, Chapel Hill, N.C., U.S.A.

1. Introduction.

Nonlinear filtering theory has been developed over the last few decades, largely,

as an application of stochastic calculus. The theory (which will be referred to below

as the conventional or stochastic calculus theory) has led to many important new ad-

vances in the subject and, indeed, given rise to problems of interest to stochastic

calculus itself. When it comes to statistical applications, however, the approach
based on stochastic calculus has many shortcomings which originate from the use of

the Wiener process as a model for noise. This point has been recognized by many

writers and has led to attempts to create a pathwise or robust version of the theory

(For details, see the references in [1]).

In this article we present a very brief outline of an alternative approach deve-

loped recently in collaboration with R.L.Karandikar. In this theory, the Wiener

process is replaced by finitely additive (f.a.) Gaussian white noise in the filtering

model in which we also assume the independence of signal and noise.

Some of the new features of the white noise filtering theory are the following:

(1). No semimartingales or stochastic integrals need be used.

(2). A complete solution of the nonlinear filtering or prediction problem in the

conventional theory involves, in general, solving a stochastic partial diffe-

rential equation (SPDE). The latter is now replaced by "ordinary" partial

differential equation in which the observation y of the white noise model

enters as a parameter in the coefficients.

(3). Infinite dimensional (specifically, Hilbert-space valued) signal processes

can be handled more naturally in the new set up and, in fact, the nonlinear

filtering problem at this level of generality has been completely solved.

(4). The white noise theory yields results consistent with (and in most cases,

under less restrictive conditions) the robust form of the conventional theory.
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Before : cribing our main results on filtering theory it is necessary to introduce

the terminology and some of the basic definitions of the white noise calculus that

enable us to obtain a suitable definition of conditional expectation. These definitions

are more inclusive than the ones giver in some of our previous publications. (All

references relevant to this article will be found in [I]or [2]). A detailed development

cannot be presented here for lack of space and will be available in [2].

2. Preliminaries on finitely additive white noise calculus.

Let (Q,A) be a measurable space and let H be a real separable Hilbert space with

inner product and norm denoted respectively by (,) and 1-1. Denote by P(H) , the

family of orthogonal projectors on H with finite dimensional range. For P E P(H)

define Cp = {P-B, a Borel set s Range P} . Let C = U Cp . Let E = QxH' - PEP(H)
and define E to be the field U ) Ep where Ep is the product a-field AxCp.

PEP(H)
(E,E) is called a quasicylindrical measurable space. A quasicylindrical probability

(QC) 8 on (E,E) is a finitely additive measure with S(E) = 1 and such that its re-

striction 8p to Ep is a (countably additive) probability measure. For our purposes,

the most important example of a QCP is obtained as follows. Let 1 be a complete

probability measure on (Q,A) and m, the canonical Gauss measure on (H,C), i.e.,

the f.a. measure with characteristic functional exp{-Jh121. The probability measures

rOmp on Ep are consistent and determine on (E,E) a unique QCP a such that

ap = Hlmp. We write a = T7m.

A function f defined on E and taking values in a Polish space S is called a

cylinder function if f(w,h) = f(w9,(h,hi),...,(h,hn)) for some hl,...,hn in H and

some measurable function f1: xfRn -0 S. Let S be a QCP on (E,E). With each cy-

linder function f is associated a lifting R8(f) which is a random variable (r.v.)

on a "representation" propability space (?,XIi), the class of S-value d r.v.s. being deno-

ted by L( ,A,f;S). The precise definition of a lifting requires the notation of the rep-

resentation of a QCP B and will not be given here. (See [1]). We need a class, wider

than the class of cylinder functions for which a lifting can be defined: fEL(E,Ea;S)

if and only if for each P E P(H) (= a set directed by < where Pi <P 2  if Range P1

z Range P2 ), fp(w,h): = f(wPh) is Ep/B(S) -measurable and the net {Ra(fp), PEP(H)}

converges in n-probability to a limit which is defined to be the lifting Ra(f) of f.

It can be shown that L(E,E,O:S) does not depend on the choice of representation of a.

Integration w.r.t 8 is defined as follows: Let

L1 (E,E,B) ={f E L(E,E,B;S): fIR8 (f)Idft <cc)

For f E LI(E,E,8) define ff d0 = fRB(f)d f. The value of the integral does not
E



depend on the choice of representation. We note that (H,C) is a special example

of a quasicylindrical measure space.

F.a. statistical model of filtering and estimation.

Definition. The identity mapping e on H as a mapping from (H,C,m) to (H,C) is

called Gaussian white noise. Let E: Sl-H be a B(H)/A-measurable map. Writing

E(w,h) = E(w) and e(w,h) = e(h), define y: E -H by

(1) y = E + e

For (w,h) E E, y(w,h) = E(w) + e(h) . (1) is the abstract model for filtering,

y being the observation and E, the H-valued signal r.v.

Definition of a quasi cylindrical map (QCM) and conditional expectation:

Let (E',E') be a quasi-cylindrical measurable space and 4: E -E' such that

VP' E P', 3P E P for which 4-1 (E,) E Ep. Then k is called a QCM.

We mention some examples of QCM's.

(i) Let Q be an orthogonal projection on H and H' = QH.

Then Q: H -H' is a QCM.

(ii) y given by (1) is a QCM from (E,E) to (H,C).

(iii) Qy is a QCM from (E,E,) to (H',C')

In our theory conditional expectations will be defined only with respect to QCM's.

Let f E L'(E,E, ) and let * be a QCM as defined above. Suppose the following con-

ditions are satisfied:

(a) There exists g E L(E',E',S', R), such that go4 E LI(E,E,B,R) and

Ra'(g) = Ra(go4);

(b) For all F' E E', ff1F'( )dB = fgoOIF,()d.
E E

Then we define the conditional expectation

E(fI) = goo

The class of all g satisfying (a) and (b) will be denoted by U(€)

Remark 1. The existence of g and hence that of the conditional expectation is not

asserted in the definition - an important departure from the situation in countably

additive measure theory. Moreover, the conditional expectation, when it exists, is

defined on the observation space itself and not on some representation space.

10V



Bayes Formula and Zakai equation.

A finitely additive version of the Bayes formula is the principal tool in our theory.

Theorem 1. Let y be given by the abstract statistical model (1). Let Q be an

arbitrary orthogonal projection on H, H' = QH. Let g be an integrable function

on (11,Af). Then Et(glQy) exists and is given by the formula

E'(gIQy) = aQ(g,Qy)

Ea~~ga QyQ OQ(l ,Qy)

where for h' E H'.

aQ(g,h') = fg(w) exp (h',Q (w)) - J.Q(w ]M(w)

We give an idea of the proof: Without loss of generality, assume g Z 0 and

fgdn = 1. Let

4Dg(C') = fg(W)1c ,(Qy(w,h))d(w,h) when C' E C'

E

Also let m' be the canonical Gauss measure on H', and

J'(B) f= g(w)1B(&(w))dTT(w), (B a Borel set in H).

Then

$g(C') = Im'(C'-k)dt' (k) and i<<n'

H'g
dO

with Radon-Nikodym derivative d (h') = aQ(g,h') . Hence from the definition of

n' = c[Qy]-V we have
(Dg(C') = f IC , ( h ' )  

Q  g dh ' h
H' Q 1, ' dn ( ) .

Both assertions of the theorem follow once we show that Q E U(Qy)

Applications to nonlinear filtering theory.

We now specialize the model (I) to the following:

(2) Ys = hs(Xs) + es , 0 ; s S T , where

(i) X = (Xs , 0 s i T) is a Markov process taking values in a Polish space S

and defined on (Q,A,P);
T

(ii) h: [O,T] xS Rm is a measurable map such that flhs(Xs)1 2ds< P-a-s
0



Let H be the real Hilbert space {n: [O,T]lRm =: IqlEL 2[O.T]}

s(w) = hs(Xs(w)) , 0 sST, i.e. E(w)EH. The precise measurability

conditions on X and h will be omitted;

(iii) e = (es) is Gaussian white noise on H, independent of X.

In this model (ys) is the observation process defined on the finitely additive

probability space (E,E,P) 2 Let Qt be the orthogonal projection with range
T

t Ht= EH: fInsl2 ds = 0

The Bayes formula of Theorem 1 now takes the following form which is the starting

point for deriving the necessary differential equations for the optimal filter:

For f: S -R such that foXt E L1(,A,n) , E 4 f(xt)IQty] -t(1,y) where

(Qty)(s) = y(s), for Os~t , =0 for t<sSt and

at(fq) =ff(Xt(w))exP[j fh nJ(Xs(w))ds -1 m (hJ(Xs(w))ds]dn(w)

Assume that X is an Rd-valued diffusion with extended generator

1 aL r~ i tx) i + I bi(t,x)
t 2ij ax axj  i axI

We shall make the natural assumption that C 12([0,-) xRd) S D . Then the "unnorma-0

lized conditional expectation" at(f,y) satisfies the following differential equation

which is the finitely additive or white noise version of the Zakai equation of the

conventional theory.

T
Theorem 2. Let E-lhs(Xs)12ds < o . Then for y E H, and f E D ({Lt})

0

(= domain of the generator Lt), d t(f,y) = ot(itf,y) + Y ot(hjf,y)yJ where

Ltf = Ltf - 1 1h 2f .=1

If at(f'n) = 1d f(x)pt(x,n)dx ' then pt(X,n) is called the unnormalized conditio-

R
nal density of the optimal filter. We now state one of the typical results pertaining

to the filtering problem of a d-dimensional Markov signal process. It privides an

alternative to solving the analogous stochastic partial differential equation (equiva-

lently, an infinite dimensional SDE) for the conditional density.

Theorem 3. Assume the following conditions

(i) For all i,j , aij are bounded, and

-men



(ii) E aij (t~x)zizj Z K1I, (K1'>O0) for all (t,x) and z =(zl,...,zd)E Rd.
i ,j=1

(iii) ai 13 - Li, b , re locally Hblder continuous functions
axi ax ax3  axi

satisfying the growth condition jg(t,x)j :S K2(1+ixi 2) (0 <K 2(<.) for

all (t,x)

hk ahk a 2hk an 3hk
(iv) h a:x- - xa-- ad T. are locally Hdilder continuous in (t,x)

(hk are the components of the vector h).

2k kh Dk a 2h hk.2h hk
(v) hk, a t aij -. , E + a h and T-b -- satisfy

Saxi ji (x x ax1 x3x3 ax

the growth condition in (iii). Finally note the following assumptions about

the initial random variable X0

2(vi) E expaIX0 1 <cc for some at>0

(vii) The distribution of X0has a continuous density p satisfying

I,,(x) I :i exp{ K3 (14Ix,2)}~ for some E:>O0 , and a constant K3 >O0

Then

(a) For every y E H, there is a unique pt(x,y) which satisfies

ap t(x~y) _

at) Ltpt(x~y) Y ( hijx)yj - 11ht~ W12)(xy) for a.e.t.,

with the initial condition po(x,y) = (p(x) and

pt(x~y) -exp[ I h3(x) f Yids E G
Ij-1 t 0 I

where G is the class of C1 '2([O,T] x Rd) functions satisfying the growth

condition in (iii).

(b) For all y E H, the unique solution p t(x,y) of (3) is the unnormalized

()conditional density of the filtering problem.
()The mapping y-*p t(x,y) is continuous in the sense that if yn-*y in H

then P.(',Yn)-P.(',y) uniformly on compact subsets of [0,T] xRd.

Remark 2. If only conditions (ii), (iii) and (vii) are assumed and h is assumed

to be locally Hdlder continuous, then Eqn (3) can be shown to have a unique solution

in the class 0 , provided y EHo where H0  {yE H: yt is Hd5lder continuous}.

*' r~~ 10 0 O



Remark 3. A special application of the previous remark is to the so-called cubic
3 +3

sensor: Take d=2, m=1 and hs(x) a h(x) = x_ 3x 2 , x=(x,x 2 ) . Then h is

locally HdIder continuous and hence for every yEH O , the Zakai equation (3) has a

unique solution in G provided the drift and diffusion coefficients satisfy conditions

(i)-(iii).

-p

3. Hilbert space-valued Markov signal. Measure-valued optimal filter.

Suppose that in the statistical model ys z hs(Xs) + es , 0 s; T , h is a measu-

rable function from [0,T] xS -K where K is an infinite dimensional separable

Hilbert space such that
T

'hs(Xs)iK ds < rr-a.s.
0

and e= (es ) is Gaussian white noise on H = L2 ([O,T];K) . This is a situation where,

the state space of the signal process is essentially infinite dimensional. In this

case, there can be no conditional density since there is no Lebesgue measure in Hilbert

space and one can only deal with measure-valued equations. Measure-valued SDE's of

It6 type for the optimal filter have been studied by Kunita and by Szpirglas.

In the white noise context, measure-valued differential equations (in which the

observation path y occurs as a parameter) have been obtained and the existence and

uniqueness of solutions have been established by Kallianpur and Karandikar

in a recent paper (See [2]). Here, for the sake of completeness we state two of

the results. Let Qt be the orthogonal projector on H with range Ht = {yEH:
T
T 'nKu)Idn=0}. If B is any Borel set in the Polish space S and rEH then
t
define

Pt(n)(B) = f 1B(Xt(w))exp (n,Qt&(w)) - 2Q(w)112}dn(w)

and

Ft(n)(B) = [Ft( )(s)] - f Ft(n)(B)

In the above expressions, the inner product in H is given by

T
is(n,n 2  (nl(s),n 2 (s))Kds , nfl = (n,n) and : (Q,A,VT) H

is defined by
T

t(w) = ht(Xt(w)), 0 t T if Jhs(Xs)jKds <
0

= 0 otherwise. Let M(S) be the class of countably additive, finite Borel measures

on S. Then for each nEH, rt(n) and Ft(n) belong to M(S). They are, respectively,



the unnormalized and the (normalized) conditional distribution of Xt

Theorem 4. For Oit:T

Ft , Ft E L*(H,C,n;M(S))

and and rt(y) , Ft(Y) E L*(E,E,(;M(S))

Here the star denotes the subclass of elements f in L(E,E,c;M(S)) s.t. Ra(fOPk)-
Rc(f) in probability for all k I , Pk}  P(H)

We shall now impose the further restriction Ihs(x)IK q(s) V x E S where q is a
T2

measurable function on S s.t. fq (s)ds < Let {Tt} be the one parameter semi-
0

group associated with Xt = (t,Xt). Let L be the extended generator of {Tt} with

domain V. The precise definitions of Tt and L will not be given here. We use

the notation <f,p> for ffdV where V E M(S) .

Theorem 5. For all yEH , {ft(y)} satisfies the equation

*t
<f(t,'),rt(y)> = <f(O,-),ro(y)> + J<(Lf)(s,.),rs(y) > ds

" 0(4) t10

+ <{(hs(-),ys)K - Lhs(.)1 }f(s,.)rs(y) >ds
0

* for all fED.

Furthermore, Ft(Y) is the unique solution of (4) in the class of Borel measures {Kt}

on S such that for all Borel sets A,

(5) Kt(A) is a bounded, measurable function of t , and Ko(A) = EnlA(Xo)

A similar result holds for Ft(y) . The unique solution can be obtained by a

sequence of approximations Pn(y) which converges to rt(y) uniformly in t, in

total variation norm in M(S).

Markov property of the optimal filter.

The optimal nonlinear filter in the white noise theory provides a concrete example

of a continuous time Markov process defined on a f.a. probability space. From Theorem 4

we see that ft(y) is an M(S)-valued family of r.v.'s on (E,E,t) . The process

Ft(y) is a Markov process on (E,E,ct) w.r.t. {Qty} in the following sense:



(i) There exists g E U(Qty) s.t. rt(y) = g(Qty) for all t.

(ii) For Os <t,...,tk and for all f E Cb(M(S)k) , (k,s,t1,...,tk arbitrary),

E [f(rt (y), ..., rtk(Y)) Qsyl = g l(s(y))

for a suitable function gl

We observe without going into details that the filtrations (FY ) w.r.t. which the
t

Markov property is defined in the conventional theory is now replaced by the family of

QCM's {Qty}, t E R.

A. 4. Consistency of the white noise theory with the stochastic calculus approach.

Most of the robustness results have been obtained only for the case when the signal

X is an Rd-valued diffusion. The cases when (a) (Xt) is the solution of a S.D.E.

driven by a general process of independent increments and (b) Xt is a Markov process

taking values in an infinite dimensional Hilbert space will not be considered here.

Problem (a) has recently been studied by H.P.Hucke in his thesis. Problem (b) remains

to be solved.

An easily verifiable "internal" robustness property is that rt(hn,.) -. rt(h,.) in

total variation norm as hn -- h in H . Let (,A,) = (,A,) 8 (0o,A,T 0 ) , where

the second factor is m-dimensional Wiener space. Suppose (Yt) is the observation

process of the conventional filtering model defined on (s,A,rT) and let FtY be thet
observation filtration. By choosing a lifting R. of a to (2,A,r1) we obtain

the following result which reveals the underlying connection between the two theories:

Theorem 6. If f: Rd - R s.t. Elf(Xt)I <o , Ot T , then

R,[Ea(f(Xt) Qty)]=E(f(Xt) IFY) , a.s.

*t

Let Q0 = foWE: wo ( ') is Hblder continuous}. Our central result on robustness is
the following

Theorem 7. Assume the conditions of Theorem 3. Then there exists a continuous

function P (.,Y): £2*-.C([O,T] @Rd) which is a version of the unnormalized conditional

density of Xt given FY with the property that Pt(x,Z) pt(x,z) , 0 t.Tt

xE Rd where Zt  fz sds, zE H
0



Filtering models with non-white Gaussian noise.

We may examine the question of robustness of the white noise approach from the point

of view that is more usual in the statistical theory. Roughly speaking, our results

are robust in the sense that the optimal filter changes only slightly if the Gaussian

noise is no longer white but has a covariance operator which is close to the identity.

We have not been able to prove this statement in its greatest generality. To our

knowledge this question is not completely settled even in the conventional theory.

We have been able to establish this kind of robustness for a.f.a. non-white Gaussian

process whose covariance z has a bounded inverse. For reasons of space we cannot

go into this work, done in collaboration with H.P.Hucke and R.L.Karandikar, and we

content ourselves with stating the Bayes formula for this model.

Theorem 8. Let the filtering model (1) be given on the quasicylindrical probability

space (E,E,c&,) where (E,E) is as before, (i. = n 6 my and my is the f.a. Gaussian

measure on (H,C) with zero mean and covariance operator Z. It is assumed that the

selfadjoint, positive operator Z has a bounded inverse. Let g be a rT-integrable

r.v. Then E (gly) exists and

OY (g,y)
E (gly) = (Ty where

GF(g,h) = fg(w) exp (X- (W),h)- 21 1dT(w) h EH

A direct proof is somewhat lengthy. A simpler way is to reduce the problem to the

white noise case already considered. This can be done by introducing a new inner

product in H , [h,k] = (F-1 h,k) on which m. is a white noise measure.

I wish to thank the Royal Norwegian Research Council and Professor D.Tjostheim for

the invitation to visit the University of Bergen where this article was written.
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